How to measure your yard

To apply the correct amount of fertilizer on your lawn, you need to know its surface area. Here's how you'd get that figure.

If your lot is 125 feet deep and 100 feet wide*, simply multiply 125×100 to get a total of 12,500 square feet. Subtract from this total the square footage of the house footprint, driveway and any other areas that are not affected. The remainder will be the square footage of the area to be addressed.

Total lot:	lot, 125'x100'	$=12,500 \mathrm{sq} . \mathrm{ft}$.
Subtract:	house, $44^{\prime} \times 26^{\prime}$ deck, $12^{\prime} \times 12^{\prime}$ drive, $40^{\prime} \times 10^{\prime}$ garden, $25^{\prime} \times 15^{\prime}$ walk, 4'x20'	$\begin{aligned} & =1,144 \mathrm{sq} . \mathrm{ft} . \\ & =144 \mathrm{sq} . \mathrm{ft} . \\ & =400 \mathrm{sq} . \mathrm{ft} . \\ & =375 \mathrm{sq} . \mathrm{ft} . \\ & =80 \mathrm{sq} . \mathrm{ft} . \end{aligned}$
Total to subtract		= 2,143 sq. ft.
Remainder: yard		$=10,357 \mathrm{sq} . \mathrm{ft}$.

Two bags of 5,000 sq. ft. material will fertilize this lawn.
*An easy way to measure long distances is with your garden hose, provided you know its length. For instance, let's say your garden hose is 50 ' long. The area being measured is $2^{1 / 2}$ (i.e., $50^{\prime}+50^{\prime}+25^{\prime}$) hose lengths long by 2 hose lengths $\left(50^{\prime}+50^{\prime}\right)$ wide. This means the area is $125^{\prime} \times 100^{\prime}$. That's 12,500 square feet.

Department of Conservation \& Recreation CONSERVING VIRGINA'S NATURAL AND RECREATIONAL RESOURCES

How to determine the square footage of some familiar shapes

Squares, rectangles	
Area $=$ Length x Width	
Length $=50^{\prime}$	
Width $=30^{\prime}$	
Area: $50^{\prime} \times 30^{\prime}=1,500$ sq. ft.	

Triangles

Area $=.5 \times$ Base \times Height
Base $=40^{\prime}$
Height $=80^{\prime}$
Area: . $5 \times 40^{\prime} \times 80^{\prime}=1,600 \mathrm{sq} . \mathrm{ft}$.

Circles

Area $=\pi \times r^{2}$
($\pi=3.14$)
r (radius) $=20^{\prime}$
Area: $3.14 \times\left(20^{\prime} \times 20^{\prime}\right)=1,256 \mathrm{sq} . \mathrm{ft}$.

Irregular shapes

Divide area into smaller sections having familiar shapes (e.g., triangles A and D; rectangles B and C), then:

Area $=$ Area $A+$ Area $B+$ Area $C+$ Area D

A: . $5 \times 25^{\prime} \times 65^{\prime}=813 \mathrm{sq} . \mathrm{ft}$.
B: $15^{\prime} \times 25^{\prime}=375$ sq. ft.
C: $50^{\prime} \times 30^{\prime}=1,500 \mathrm{sq} . \mathrm{ft}$.
D: . $5 \times 10^{\prime} \times 40^{\prime}=200$ sq. ft.

